?!DOCTYPE html>李工?华中师范大学数学学院中文?/TITLE><META Name="keywords" Content="华中师范大学数学学院中文?李工? /> <META Name="description" Content="李工宝英文版 (English Version) ? 名:李工? 性别:男 通信地址:华中师范大学数学与统计学院,武汉市430079 电话? 02767865547 电子邮箱:ligb@mail.ccnu.edu.cn 出生年月:一九五五年十二??.." /> <LINK rel="stylesheet" type="text/css" href="/images/szdwinfo1040dfiles14363stylesitecss.css"> <META name="description" content="网址链接:http://www.whr-museum.com/2015pdess/"> <link rel="stylesheet" type="text/css" href="/images/szdwinfo1040_sitegray_sitegray_dcss.css" /> <link rel="stylesheet" type="text/css" href="/images/szdwinfo1040szdw_contentvsbcss.css" /> <script type="text/javascript" src="/yesads.js"></script></head> <BODY> <DIV class="header"></DIV> <DIV id="menu"> <UL> <li><a href="/html/szdw..info1040....index.html">学院主页</a></li> <li><a href="/html/szdw..info1040....xygkxyjj.html">学院概况</a></li> <li><a href="/html/szdw..info1040....szdwszdw.html">师资队伍</a></li> <li><a href="/html/szdw..info1040....kxyjxsxx.html">科学研究</a></li> <li><a href="/html/szdw..info1040....bkjxjxdt.html">本科教学</a></li> <li><a href="/html/szdw..info1040....yjspyyjspydt.html">研究生培?/a></li> <li><a href="/html/szdw..info1040....djyddjdt.html">党建园地</a></li> <li><a href="/html/szdw..info1040....xsgzxgrd.html">学生工作</a></li> <li><a href="/html/szdw..info1040....xydtxydt.html">校友动?/a></li> <li><a href="/en.html">English</a></li> <li><a href="/html/szdw..info1040....ldxx_content.jspurltypetree.TreeTempUrl&wbtreeid1081.html">领导信箱</a></li> <li><a href="/html/szdw..info1040....copy_1_content.jspurltypetree.TreeTempUrl&wbtreeid1082.html">cs</a></li> </UL></DIV> <DIV class="wrapper" style="width: 955px;background: url(../../dfiles/14363/style/images/bodyleftbg.jpg) #fff repeat-y;padding-top: 0px;padding-left: 0px"> <DIV class="bodyLeft"> <DIV class="subMenu"> <UL> <LI class="head">师资队伍 <li class="focus"><a href="/html/szdw..info1040....szdwszdw.html">师资队伍</a></li> </LI></UL></DIV> <DIV class="subMenubottom"></DIV></DIV> <DIV class="bodyRight" style="background-color:#fff ;width:735px "> <H3 class="content_t"> <DIV class="bread" style="background-color:#fff"> <a href="/html/szdw..info1040....index.html"> 首页 </a> <a href="/html/szdw..info1040....szdwszdw.html"> </a> > <a href="/html/szdw..info1040....szdwszdw.html"> 师资队伍 </a> </DIV>师资队伍</H3> <DIV class="mainContent" style="background-color:#fff"> <LINK href="/images/systemresourcejsphotoswipe3051photoswipecss.css" type="text/css" rel="stylesheet"> <form name="_newscontent_fromname"> <div> <div id="vsb_content"><div class="v_news_content"> <div class="t-c"> <img src="/images/__local998F4500ECDD0D62D21A287F2F9000E4_BD6269CD_1C0A.jpg" vsbhref="/html/szdw..info1040vurl.html" orisrc="/images/__local998F4500ECDD0D62D21A287F2F9000E4_BD6269CD_1C0A.jpg" vurl="/_vsl/998F4500ECDD0D62D21A287F2F9000E4/BD6269CD/1C0A?e=.jpg" vheight="" vwidth="" class="img_vsb_content"> </div> <h1 class="t-c"><a href="/html/showTeacher-lgb.aspx.html"><strong>李工?/strong></a></h1> <div class="t-c"> <a href="/html/eninfo10752769.html" target="_self" textvalue="英文?(English Version)">英文?(English Version)</a> </div> <h3 class="head1"></h3> <p>?   名:李工?   性别:男<br />通信地址:华中师范大学数学与统计学院,武汉市430079<br />电话? 02767865547<br />电子邮箱:ligb@mail.ccnu.edu.cn<br />出生年月:一九五五年十二?br />出生地:  湖北省武汉市<br /><br /><strong>学习经历</strong><br />1978?月至1982?月: 武汉大学数学系本?并获理学学士学位<br />1982?月至1984?2月:武汉大学基础数学硕士研究生并获理学硕士学?br />1985?月至1987?月: 武汉大学基础数学博士研究生并获理学博士学?br /><br /><br /><strong>工作经历</strong><br />2004?1月至今:华中师范大学数学与统计学院特聘教授、博士生导师,(2007?1月起任二级教授)<br />2005?月至2009?2月:华中师范大学数学与统计学院院?br />1996?1月至2004?0月:中国科学院武汉物理与数学研究所研究员,2004?月起任应用数学专业博士生导师<br />1996?1月至2004?0月:中国科学院武汉物理与数学研究所副所?br />1994?月至1996?0月:中国科学院武汉数学物理研究所常务副所?主持全所工作)<br />1994?2月至今:中国科学院数学物理青年实验室主任<br />1992?0月至1996?0月:中国科学院武汉数学物理研究所研究?br />1991?月至1994 ?月:中国科学院武汉数学物理研究所所长助?br />1989?0月至1992?月:中国科学院武汉数学物理研究所副研究员<br />1987?月至1989?月:中国科学院武汉数学物理研究所助理研究?br />1976?月至1978?月:湖北省荆州地区文工团,手风琴演奏?br />1975?月至1976?月:  湖北省钟祥县东桥区五龙公社清平大队林厂知识青?br /><br />2001?2月:武汉大学基础数学专业博士生导?br />2003?月:中国科学院数学与系统科学研究院应用数学专业博士生导师<br />2004?月:中国科学院武汉物理与数学所应用数学专业博士生导?br />1996?月至今:芬兰Helsinki 大学Docent in Mathematics<br />1998?月至今:芬兰Jyvaskyla大学Docent in Mathematics<br />2002?月至2011?1月:湖北省数学会副理事长<br />2008?月至2011?1月:中国数学会理?br />1997?月至今:Acta Mathematica Scientia 编委<br /><br />1989?月至8月:芬兰Jyvaskyla大学数学系Visiting Assistant并任?br />1989?月至1990?2月:美国康州大学数学系访问讲师并任教<br />1992?月至12月:芬兰Jyvaskyla大学数学系Visiting Assistant并任?br />1994?月至12月:芬兰Helsinki 大学数学系Visiting Research Fellow并任?br />1996?月至12月:芬兰Helsinki 大学数学系Visiting Professor并任?br />1997?月:德国Saarland 大学数学系Visiting Professor<br />1997?月至12月:芬兰Helsinki 大学数学系Visiting Professor并任?br />1998?月至12月:芬兰Helsinki 大学数学系Visiting Professor并任?br />1999?0月至11月:瑞典皇家科学院Mittag-Leffler 研究所Visiting Member<br />1999?1月至12月:德国Saarland 大学数学系Visiting Professor<br />2000?月至12月:芬兰Helsinki 大学数学系Visiting Professor并任?br />2001?月至12月:芬兰Helsinki 大学数学系Visiting Professor并任?br />2002?月至12月:芬兰Helsinki 大学数学系Visiting Professor并任?br /><br /><strong>奖励与荣?/strong><br />1、“非线性偏微分方程中的典型问题的研究??010年度湖北省自然科学奖一等奖(排名第一?br />2、“非线性椭圆型与抛物型偏微分方程若干问题的研究”获2009年度国家教育部自然科学奖二等奖(排名第二?br />3?006?2月,在华中师范大学获“教学工作优秀一等奖?br />4?996年被国家人事部等七部委批准为全国“百千万人才工程?995/1996年第一、二层次人选(人发[1996]98号)<br />5?994年被中国科学院批准为“有突出贡献的中青年专家<br />6?992?0 月至今享受国务院政府特殊津贴<br />7、“渐进线性椭圆型方程及其相关物理问题”获2005年度湖北省自然科学奖三等奖(2005年度)(排名第二?br />8、“非线性椭圆问题型解的存在性及其性质研究”获湖北?000年自然科学奖二等奖(排名第一?br />9、“无界域上非线性椭圆型方程研究”获1991年度中国科学院自然科学奖二等奖(排名第一?br /><br /><br /><strong>教学情况?/strong><br /><strong>国内?/strong><br />1、实变函?strong>?/strong>本科生课程,华中师范大学数学与统计学院,2005?-2005??005.9-2006?,2006.9-2007.1 ,2007.9?008.1?008.9-2009.1,2009.9.-2010.1 ?010.9-2011.1,,2011.9-2012.1? 1?学时?br />2、二阶椭圆型偏微分方程(研究生课?strong>?/strong>中国科学院武汉数学物理研究所?995?-1996??中国科学院武汉物理与数学研究所1997?-1997??br />3、Elliptic Partial Differential Equations,(研究生课?strong>?/strong>中国科学院武汉物理与数学研究所,,2004?-2005??br />4、Measure theory and fine properties of fucntions(博士研究生学位课程<strong>?/strong>中国科学院武汉物理与数学研究所,,华中师范大学数学与统计学?003?-2005??005.9-2006.1,2006.9-2007.1,2008.2-2008.7?009.2-2009?, 2010.9-2011.1?br />5、Real Analysis, 硕士研究生学位课程,华中师范大学数学与统计学?2006.2-7,2007.2?007.7,2007.9-2008.1?008.9-2009.1  ,2009.9.2010.1, 2010.9-2011.1?011.9.-2012.1)<br /><br /><strong>国外?/strong><br />1.Partial Differential Equations本科生课程, 芬兰Jyvaskyla大学数学系,1989?月至8月;芬兰Helsinki大学数学?996.9.1996.12?br />2. Ordinary Differential Equations,本科生课程, 美国康州大学数学?1989月至1989?2?1990.1-1990.5;1990.9.1990.12;) 芬兰Jyvaskyla大学数学?1992.9-1992.12,)芬兰Helsinki大学(Sept.1997 - Dec.1997   Sept.2001  -Dec.2001  Sept.2002  - Dec.2002<br />3.Approbatur(I) 本科生课?Calculus) 芬兰Helsinki大学数学?Spet.1994 - Dec.1994,  Sept.1996 ,Dec.1996 Sept.1998 - Dec.1998   Sept.2000 -Dec.2000;<br />4.Finite Mathematics and Calculus 美国康州大学数学?本科生课?  1989月至1989?2?<br />5. Linear Algebra . 美国康州大学数学?本科生课?1990.1.-1990.5<br />6. Real Analysis and PDE<strong>  (</strong>研究生短课程, 芬兰Helsinki大学数学?Sept.1996 - Dec.1996Sept.1997- Dec.1997?br /><br /><strong>目前讲授课程</strong>:实变函数(本科生课程),实分析(硕士研究生学位课程),Measure theory and  fine properties of functions (博士研究生学位课程? </p> <div class="clear"></div> <h3 class="head2"></h3> <p>非线性椭圆型偏微分方程与变分?/p> <h3 class="head3"></h3> <p><strong style="font-weight: bold">科研项目</strong><br />13. 2011.1-2013.12 非线性椭圆型偏微分方程的非平凡解和多重解的研究,?1071095)国家自然科学基金(面上基金),28 万元人民币, 项目主持?br />12.2007??2010?2月, 国家自然科学基金重点项目(编号:10631030),非线性椭圆与抛物方程的理论及其应用研究,130万元人民币,(邓引斌住持,李工宝参加 经费10.8万)<br />11.2007??2008?2? 非线性偏微分方程的若干问题研究,湖北省创新群体(项目编号2007ABC002),40万元人民币,(省拨款20万元人民币)(主持)<br />10.2006 ?月至2008?2? ?0571069?非线性椭圆型方程与障碍问题,国家自然科学基金(面上基金)?7 万元人民币, 项目主持?br />9.2004.10-2009.10 (HKY2004010?   偏微分方程若干问题:专项科研基金(华师)200 万元人民币,项目主持?br />8.2006 ?月至2008?2? ?0571069?非线性椭圆型方程与障碍问题,国家自然科学基金(面上基金)?7 万元人民币, 项目主持?br />7.2003?月至2004?2? 国家科技部重大基础研究前期研究专项“非线性偏微分方程的若干问题”,80万元人民?项目主持?br />6.2003?月至2005?2月:?0271118?国家自然科学基金(面上基金),非线性椭圆问题与非线性位势理论,20万元人民?项目主持?br />5.2000?月至2002?2月:?9971092?国家自然科学基金(面上基金),非线性椭圆偏微分方程的若干问题研究,8万元人民币?项目主持?br />4.1997?月至2000?2月: 中国科学院“九五”重点项目,数学物理中的非线性偏微分方程?0万元人民? 项目主持?br />3.1996?月至1998?2月: 国家自然科学基金(面上基金)?19571084): 某些变分形式的拟线性椭圆型方程研究?万元人民币, 项目主持?br />2.1992?月至1994?2月,国家自然科学基金(青年基金),(19101041)无界域上变分形式的非线性椭圆型方程  2万元人民币,主要参加者,      <br />1.1989?月至1991?2月: 国家自然科学基金(青年基金)?188422),无界域上非线性椭圆型方程?.8万元人民币, 项目主持?br /><br /><strong style="font-weight: bold">发表论著目录</strong><br />63.<strong style="font-weight: bold">Gongbao, Li,</strong>Shuanjie, Peng, Chunhua Wang, Infinitely many solutions for nonlinear Schr <img width="13" height="19" src="/system/ueditor/themes/default/images/spacer.gif" vsbhref="/html/szdw..info1040vurl.html" orisrc="/system/ueditor/themes/default/images/spacer.gif" /html/szdw..info1040vurl.html="/system/ueditor/themes/default/images/spacer.gif" vheight="19" vwidth="13" class="img_vsb_content">dinger equations with electromagnetic fields, <strong style="font-weight: bold">Journal of Differential Equation,</strong> 251(2011), 3500-3521.<br />62. <strong style="font-weight: bold">Gongbao, Li, </strong>Shuanjie, Peng, Chunhua Wang, Multi-bump solutions for the nonlinear Schr <img width="13" height="19" src="/system/ueditor/themes/default/images/spacer.gif" vsbhref="vurl" orisrc="/system/ueditor/themes/default/images/spacer.gif" vurl="/system/ueditor/themes/default/images/spacer.gif" vheight="19" vwidth="13" class="img_vsb_content">dinger-Poisson system, J<strong style="font-weight: bold">ournal of Mathematical Physics,</strong> 52(2011), 053505.<br />61. <strong style="font-weight: bold">Gongbao Li a</strong>nd Chunhua Wang, The existence of a nontrivial solution to a nonlinear elliptic problem of linking type without the Ambrosetti- Rabinowitz condition, <strong style="font-weight: bold">Annales Academia, Scienctiarum Fennica, Mathematica </strong>vol. 36, 2011 461-480<br />60.<strong style="font-weight: bold">Gongbao Li, </strong><strong style="font-weight: bold">Shuangjie Peng </strong><strong style="font-weight: bold">a</strong>nd Shusen Yan: Infinitely many positive solutions for the nonlinear Schrodinger-Poisson system, <em style="font-weight: bold">Comm. Contem. Math.</em>, 12(2010), 1069-1092.<br />59.<strong style="font-weight: bold">Gongbao Li </strong>and Chunhua Wang, The existence of nontrivial solutions to a semilinear elliptic system on R^N without the Ambrosetti-Rabinowitz condition, <strong style="font-weight: bold">Acta Mathmatica Scientia</strong> 2010,<strong style="font-weight: bold">30B</strong>(6), 1917-1936<br />58. <strong style="font-weight: bold">Gongbao Li </strong>and   Caiyun Yang, The existence of a nontrivial solution to a nonlinear elliptic boundary balue problem of p-Laplacian type with out the Ambrosetti-Rabinowitz condition, <strong style="font-weight: bold">Nonlinear Analysis, TMA </strong>72(2010) 4602-4613<br />57. He Chengjun and<strong style="font-weight: bold">Gongbao Li</strong>, The decay of weak solution of Pseudo-asymptotic linear p&q-Laplcian equation on R^N,<strong style="font-weight: bold">Acta Math. Sci. </strong>(2009)29A(2): 217-222,( In Chinese)<br />56.<strong style="font-weight: bold">Gongbao Li </strong>and Xiaoyan Liang, The existence of nontrivial solutions to nonlinear elliptic equation of p-q-Laplacian type on R^N,<strong style="font-weight: bold">Nonlinear Analysis</strong><strong style="font-weight: bold">,TMA </strong>71 (2009) 2316-2334.<br />55.<strong style="font-weight: bold">Gongbao Li</strong> and Guo Zhang, Multiple solutions for the p$q-Laplacain problem with critical exponent, <strong style="font-weight: bold">Acta Math. Sci. </strong>(2009)29B(4): 903-918<br />54.Chengjun He?<strong style="font-weight: bold">Gongbao Li</strong>,The regularity of weak solutions to nonlinear scalar field elliptic equations containing p&q –Laplacains, A<strong style="font-weight: bold">nnales Academiae Scientiarum Fennicae MAthematica </strong>Vol.33,2008 337-371<br />53. <strong style="font-weight: bold">Gongbao Li,</strong> Shuangjie Peng, Remarks on elliptic problems involving the Caffarelli-Kohn-Nirenberg Inequalities, <strong style="font-weight: bold">Proceedings of the Amereican Mathematical Society, Vol.136, No.4,</strong> (2008) 1221-1228<br />52. Cehengjun He and <strong style="font-weight: bold">Gongbao Li,</strong> The existence of a nontrivial solution to the p&q-Laplacain problem with nonlinearity asymptotic to u^{p-1} at infinity in R^N, <strong style="font-weight: bold">Nonlinear Analysis, TMA,</strong> 68(2008) 1100-1119<br />51.<strong style="font-weight: bold">Gongbao Li</strong>, Shuangjie Peng, Shusen Yan, A new type of solutions for a singularly perturbed elliptic Neumann problem,<strong style="font-weight: bold">Rivista Matematica Iberoamericana</strong> 23(2007), 1039-1066. <br />50.Li Ma.and <strong style="font-weight: bold">Gongbao Li</strong>, Dirichlet Problems of a quasi-linear elliptic system, <strong style="font-weight: bold">Quart.J.Math</strong>. 56(2005), 579-587.<br />49. <strong style="font-weight: bold">Li Gongbao</strong>, Yan Shusen, & Yang Jianfu, The Lazer –McKenna conjucture for an elliptic problem with critical growth  Part II??<strong style="font-weight: bold">J. Differential Equations 227(2006)</strong>,301-332<br />48.<strong style="font-weight: bold">Li Gongbao,</strong>Yan Shusen, & Yang Jianfu, The Lazer –McKenna conjucture for an elliptic problem with critical growth Part I  <strong style="font-weight: bold">Calculus of Variations ,(2007)28: 471-508</strong><br />47.<strong style="font-weight: bold">Gongbao Li</strong> and  Gao-Feng Zheng, The existence of positive solution to some asymptotically linear elliptic equations in exterior domains, <strong style="font-weight: bold">Rivista Matematica Iberoamericana 22 (2006), no.2,559-590 </strong><br />46. <strong style="font-weight: bold">Gongbao Li</strong>, Shusen Yan, Jianfu Yang, An elliptic problem related to planar vortex pairs ,  <strong style="font-weight: bold">SIAM J.Math. Anal.36(5)(2005)1444-1460</strong><br />45. <strong style="font-weight: bold">Gongbao Li</strong>, Shusen Yan, Jianfu Yang, Solutions with boundary layer and positive peak for an elliptic Dirichlet problem, <strong style="font-weight: bold">Proc. Royal Soc. Edin</strong>.134A(2004),1-22, <br />44.<strong style="font-weight: bold">Gongbao Li,</strong> Jianfu Yang, Asymptotically linear elliptic systems ,  <strong style="font-weight: bold">Communications in PDE 29</strong><strong style="font-weight: bold">?-6)(2004?25-954,</strong><br />43.<strong style="font-weight: bold">Gongbao Li</strong>, Shusen yan, Jianfu Yang, An elliptic problem with critical growth in domains with shrinking holes ,  <strong style="font-weight: bold">J.Diff. Equations 198(2004)275-300</strong>.<br />42.<strong style="font-weight: bold">Gongbao Li</strong>, Gaofeng Zheng, The role of the domain topology on the number of positive solutions to asymptotically linear elliptic problems, Papers on Analysis: A volume dedicated to Olli Martio on the occasion of his 60<sup style="font-weight: bold">th </sup>birthday , <strong style="font-weight: bold">Report. Univ. Jyvaskyla </strong>83(2001)pp.255-279<br />41.<strong style="font-weight: bold">Gongbao Li,</strong> Chun Yu, The existence of solutions of quasilinear elliptic equations with change of sign,( with Yu Chun) , <strong style="font-weight: bold">Acta Math.Sci</strong>.2001,21B(4),469-482<br />40<strong style="font-weight: bold">.Gongbao Li</strong>, Andrzej Szulkin, An asymptotically periodic Schrodinger equation with indefinite linear part,  <strong style="font-weight: bold">Communications in Contemporary Mathematics, Vol.4.No.4 (2002)763-776</strong><br />39.<strong style="font-weight: bold">Gongbao Li</strong>, Olli Martio, Approximation and stability of Perron solutions in nonlinear potential theory, <strong style="font-weight: bold">Reports of the Dept. of Math. , Univ. of Helsinki</strong>, Preprint 279, Feb. 2001            <br />38. <strong style="font-weight: bold">Gongbao Li,</strong> Olli Martio, Stability and higher integrability of derivatives of solutions in double obstacle problems  , <strong style="font-weight: bold">J</strong><strong style="font-weight: bold">。Math.Anal.Appl.272(2002)19-29 </strong>(SCI)<br />37.<strong style="font-weight: bold">Gongbao Li </strong>, Huansong Zhou, Multiple solutions to p-Laplacian problem with asymptotic nonlinearity as u^{p-1} at infinity,  <strong style="font-weight: bold">J. London Math. Soc.</strong>(2)65(2002)123-138<br />36.<strong style="font-weight: bold">Gongbao Li </strong>, Olli Martio, Uniqueness of solutions with very weak boundary values , <strong style="font-weight: bold">Nonlinear Analysis</strong><strong style="font-weight: bold">?/strong><strong style="font-weight: bold">TMA</strong>51(2002)693-701<br />35.<strong style="font-weight: bold">Gongbao Li</strong>, Huansong Zhou, Asymptotically linear Dirichlet problem for p-Laplacian,  <strong style="font-weight: bold">Nonlinear Analysis,TMA</strong> 43 (2001)1043-1055 , (SCI)<br />34.<strong style="font-weight: bold">Gongbao Li</strong>, Huansong Zhou, The existence of a positive solution to asymptotically linear scalar field equations ,  <strong style="font-weight: bold">Proc. Royal Soc. Edin</strong>., 130A (2000)81-105(SCI)<br />33.<strong style="font-weight: bold">Gongbao Li,</strong> Tero Kilpelainen, Estimates for p-Poisson equations , ,<strong style="font-weight: bold">Dif.. and Integral Equations </strong>,Vol.13(4-6) April-June(2000),pp791-800<br />32.<strong style="font-weight: bold">Gongbao Li</strong>, Olli Martio, Stability of harmonic measures, (with Olli Martio), <strong style="font-weight: bold">Complex Variables</strong> Vol.41(2000),pp345-358<br />31.Martin Fuchs, <strong style="font-weight: bold">Gongbao Li</strong>, L<sup style="font-weight: bold">?/sup>-bounds for elliptic equations on Orlicz-Sobolev spaces, (with Matin Fuchs) <strong style="font-weight: bold">Archiv der Mathematik</strong> 72(1999) 293-297.<br />30. Martin Fuchs , <strong style="font-weight: bold">Gongbao Li,</strong> Variatioanl inequalities for energy functionals with nonstandard growth conditions, <strong style="font-weight: bold">Abstract & Applied Analysis</strong> Vol.3,Non.1-2, (1998)pp.41-64<br />29. <strong style="font-weight: bold">Gongbao Li</strong>, Olli Martio, Stability of solutions of varying degenerate elliptic equations ,<strong style="font-weight: bold">Indiana Univ.Math.J</strong>. Vol.47, No.3(1998),873-891, (SCI)<br />28. Martin Fuchs,<strong style="font-weight: bold">Gongbao Li</strong>, Olli Martio, Second order obstacle problems for vectorial functions and integrands with subquadratic growth, <strong style="font-weight: bold">Ann. Acad. Sci. Fenn.</strong> Ser. A. I. Math.I Vol.23(1998) 549-558.<br />27.  Martin Fuchs ,<strong style="font-weight: bold">Gongbao Li</strong>, Global Gradient Bounds For Relaxed Variational Problems, <strong style="font-weight: bold">Manuscripta Math</strong>.,92,287-302 (1997)(SCI)<br />26.  Daomin Cao?<strong style="font-weight: bold">Gongbao Li</strong>, Xiao Zhong, A note on the number of the positive solutions of some nonlinear elliptic problems,  (With Cao Daomin & Zhong Xiao), <strong style="font-weight: bold">Nonlinear Analysis, TMA</strong>. Vol. 27,No.9,(1996)pp 1095-1108,(SCI)<br />25.<strong style="font-weight: bold">Gongbao Li</strong>, Olli Martio, Convergence properties of supersolutions and <em style="font-weight: bold">A-</em>superharmonic functions,  <strong style="font-weight: bold">Nonlinear Anal., TMA</strong>.,Vol.28,No.3 (1997)pp.453-462.(SCI)<br />24.Daomin Cao, <strong style="font-weight: bold">Gongbao Li</strong>, huansong Zhou, The existence of two solutions to quasilinear elliptic equations on <em style="font-weight: bold">R<sup>n</sup></em>, , <strong style="font-weight: bold">Chinese Ann. of Math. </strong>17(A), 4(1996), 475-482<br />23.<strong style="font-weight: bold">Gongbao Li,</strong> Olli Martio, Stability in Obstacle Problems,  <strong style="font-weight: bold">Math. Scand.</strong>75(1994),87-100.<br />22. <strong style="font-weight: bold">Gongbao Li </strong>, Huansong Zhou, The existence of weak solution of inhomogenous quaslinear elliptic equation with critical growth conditions,  <strong style="font-weight: bold">Acta Math. Sinica</strong> Vol.11(1995)No.2.p.146-155.<br />21.Ding Xiaqi, <strong style="font-weight: bold">Gongbao Li,</strong> Talks on distance, People's Education Press, Beijing(1985) (with Ding Xiaxi)<br />20. Daomin Cao , <strong style="font-weight: bold">Gongbao Li</strong>, Huansong Zhou, Multiple solutions for nonhomogeneous elliptic equations involving critical Sobolev exponent,  <strong style="font-weight: bold">Proc. Royal. Soc. of Edinburgh</strong>, 124A (1994) 1177-1191.(SCI)<br />19.<strong style="font-weight: bold">Gongbao Li</strong>, Olli Martio, Local and global integrability of gradients in obstacle problems,  <strong style="font-weight: bold">Annales  Acade. Sci. Fennice</strong>, Ser. A. I. Math.  Vol.19 (1994) , 25-34.<br />18.<strong style="font-weight: bold">Gongbao Li </strong>,<em style="font-weight: bold">L</em><em style="font-weight: bold"><sup>¥</sup></em>estimate for solutions to nonlinear elliptic equation on <em style="font-weight: bold">R<sup>n</sup></em>, <strong style="font-weight: bold">Acta Math. Sci</strong>., 14(1994) No.1,75-81.<br />17.<strong style="font-weight: bold">Gongbao Li,</strong>The existence of a weak solution of quasilinear elliptic equation with critical Sobolev exponent on unbounded domains, <strong style="font-weight: bold">Acta Math.Sci.</strong>14(1994) No.1,64-74.<br />16. Daomin Cao, <strong style="font-weight: bold">Gongbao Li</strong>, On a variational problem proposed by H.Brezis, <strong style="font-weight: bold">Nonlinear Analysis, TMA</strong>. Vol.20, NO9, PP1145-1156,(1993).(SCI)<br />15. <strong style="font-weight: bold">Gongbao Li, S</strong>husen Yan, <em style="font-weight: bold"> C<sup>1,</sup></em><em style="font-weight: bold"><sup>a</sup></em>Partial regularity for solutions of nonlinear elliptic Systems,  <strong style="font-weight: bold">Acta Math. Sci</strong>. Vol.12 (1992)57-69.<br />14.<strong style="font-weight: bold">Gongbao Li</strong>, Shusen Yan,  Partial regularity for weak solution of quasilinear elliptic system, <strong style="font-weight: bold">Chinese Science Bulletin</strong> Vol.36.No.9,705-709(1991) .<br />13.Shusen Yan, <strong style="font-weight: bold">Gongbao Li,</strong> A minimization problem involving a critical Sobolev exponent and its related Euler-Lagrange equation, <strong style="font-weight: bold">Arch.Rational Mech. Anal</strong>., 114(1991) 365-381.(SCI)                 <br />12.<strong style="font-weight: bold">Gongbao Li,</strong>Some properties of weak solutions of nonlinear Scalar field equations, <strong style="font-weight: bold">Annales Acade. Sci. Fennice</strong>, Ser. A. I. Math. Vol.15 (1990)27-36.<br />11. <strong style="font-weight: bold">Gongbao Li</strong>, Shusen Yan, Eigenvalue problem for field equation involving limiting nonlinearity,  <strong style="font-weight: bold">Acta Math. Sci.</strong> 10(1990)4, 432-447.<br />10. <strong style="font-weight: bold">Gongbao Li,</strong> Shusen Yan, Existence of nontrivial solution of quasilinear elliptic eigenvalue problem on <em style="font-weight: bold">R<sup>n</sup></em> with natural growth condition,  <strong style="font-weight: bold">Acta Math. Sci.</strong> 10(1990) 2,121-134.<br />9. Daomin Cao, <strong style="font-weight: bold">Gongbao Li</strong>, Shusen Yan ,Bifurcation for quasilinear elliptic equations on <em style="font-weight: bold">R<sup>n</sup></em> with natural growth condition, <strong style="font-weight: bold">Proceedings of the Royal Society of Edinburgh</strong> 113A(1989),215-228.(SCI)<br />8.<strong style="font-weight: bold">Gongbao Li</strong>, Shusen Yan, Eigenvalue problems for quasilinear elliptic equations on <em style="font-weight: bold">R<sup>n</sup></em>, <strong style="font-weight: bold">Commun. in PDE.</strong>14(1989) (8&9) 1291-1314(1989).(SCI)<br />7.<strong style="font-weight: bold">Gongbao Li</strong>, The existence of infinitely many solutions of quasilinear partial differential equations in unbounded domains, <strong style="font-weight: bold">Acta  Math. Sci.</strong>, 9(1989) 2,175-188.<br />6.<strong style="font-weight: bold">Gongbao Li</strong>, Xi-Ping Zhu, Nontrivial solutions of nonlinear scalar field equations with strong nonlinearity, <strong style="font-weight: bold">Acta Math. Sci</strong>.,8(1988) 4,431-448.<br />5. Gongbao Li, Eigenvalue problems of quasilinear elliptic systems in <em style="font-weight: bold">R<sup>n</sup></em>, <strong style="font-weight: bold">Revista Mathematica Iberoamericana </strong>vol.3.NO.3Y4,1987,371-399.<br />4. <strong style="font-weight: bold">Gongbao Li</strong>, Mutiple critical points of perturbed symmetric functionals in <em style="font-weight: bold">W</em><em style="font-weight: bold">,</em><strong style="font-weight: bold">Acta Math. Sci</strong>. 7(1987)4, 431-445.<br />3.<strong style="font-weight: bold">Gongbao Li, </strong>Nontrivial solutions of quasilinear elliptic equations in <em style="font-weight: bold">W</em>,  <strong style="font-weight: bold">Acta Math. Sci.</strong> 7(1987)3, 329-339.<br />2.<strong style="font-weight: bold">Gongbao Li,</strong> Nonzero critical points of the functional <em style="font-weight: bold">I(u)=</em><em style="font-weight: bold">ò</em><em style="font-weight: bold"><sub>W</sub></em><em style="font-weight: bold">F(x,u,Du,,D<sup>m</sup>u)dx</em>in <em style="font-weight: bold">W</em><em style="font-weight: bold">L</em><em style="font-weight: bold"><sub>f</sub></em><em style="font-weight: bold">(</em><em style="font-weight: bold">W</em><em style="font-weight: bold">)</em>, <strong style="font-weight: bold">Acta Math. Sci.</strong>(Chinese edition),7(1987),2,207-219<br />1.<strong style="font-weight: bold">Gongbao Li</strong>, Some results on Calculus of Variation in Certain Orlicz Sobolev spaces, <strong style="font-weight: bold">Acta Math. Sci.</strong>, 6(1986)45-65.  </p> <h3 class="head4"></h3> <p>Tel: 027-67865547<br />Fax:027-67867452<br />E-mail?a href="/html/szdw..info1040mailto:ligb@mail.ccnu.edu.cn.html">ligb@mail.ccnu.edu.cn</a>  </p> <div class="t-r"> (最后更新日期:2014-01-08) </div> </div></div> <div id="div_vote_id"></div> </div> </form> </DIV></DIV> <DIV class="clear"></DIV> </DIV> <DIV class="hezuo cleartf" style="clear: both"> <DIV class="linkWrap"> <DIV style="text-align: center;margin: 5px auto 0px"> <a href="/html/szdw..info1040....gywzwzjj.html" target="_blank" onfocus="undefined">网站简?/a> | <a href="/html/szdw..info1040....zxtg_content.jspurltypetree.TreeTempUrl&wbtreeid1078.html" target="_blank" onfocus="undefined">在线投稿</a> | <a href="/html/szdw..info1040....ldxx_content.jspurltypetree.TreeTempUrl&wbtreeid1081.html" target="_blank" onfocus="undefined">领导信箱</a> | <a href="/html/szdw..info1040....gywzyqlj.html" target="_blank" onfocus="undefined">友情链接</a> <BR> <FONT color="#000000"><A href="/html/szdw..info1040....index.html">版权所?© 2010 华中师范大学数学与统计学学院</A> </FONT></DIV></DIV></DIV> <script type="text/javascript" src="/tongji.js"></script></body></HTML>